PlasmaQuant 9100 Series High-Resolution ARRAY ICP-OES ### analytikjena An Endress+Hauser Company ## Technical Data PlasmaQuant 9100 Series #### General - High-resolution ARRAY optical emission spectrometer with an inductively coupled plasma for multielement analyses of highest accuracy and precision - Compact bench-top instrument designed for high performance analytical tasks and ease of use - Wide range of accessories maximize productivity, safety, ease of use and reduce wear ### **Torch and Sample Introduction** ## V Shuttle Torch | Plasma geometry | Vertical | | |-----------------|--|--| | Torch mounting | Shuttle design with compact sliding torch base made from thermally and chemically
inert material | | | Gas connections | Incorporated in torch base without separate gas tube connections | | | Torch models | Fully demountable torch with separable inner, outer and injector tubes | | | | One-piece torch | | | Torch alignment | Precision auto-alignment without necessity for routine re-alignment | | | | Automatic optimization of radial observation position | | | | Possibility for manual torch height optimization for special applications | | #### **Sample Introduction** | Standard kit | Borosilicate glass cyclonic spray chamber | |--------------|--| | | Demountable V Shuttle Torch with 2 mm injector and bonnet (quartz) | | | Concentric borosilicate nebulizer 1 mL/min | | | PVC pump tubing | | Salt kit | Borosilicate glass cyclonic spray chamber with dip tube | | | Demountable V Shuttle Torch with 2 mm injector and bonnet (quartz) | | | Concentric borosilicate nebulizer 2 mL/min | | | PVC pump tubing | | HF kit | PTFE cyclonic spray chamber | | | Demountable V Shuttle Torch with alumina inner tube, Syalon outer tube, 2 mm | | | alumina injector and bonnet | | | Concentric nebulizer PFA 1 mL/min | | | PVC pump tubing | | Organic kit | Borosilicate glass cyclonic spray chamber with dip tube | | | Demountable V Shuttle Torch with 1 mm injector and bonnet (quartz) | | | Concentric borosilicate nebulizer 0.4 mL/min | | | PU pump tubing | |--------------------------------|--| | Additional sample introduction | Wide range of concentric nebulizers (EasyFit®), parallel path nebulizers, ultrasonic
nebulizer, pump tubing and torch components available | | Sample transportation | 12-roller peristaltic pump with four channels | ## Accessories for sample introduction | Autosamplers | ASPQ 3300 (capacity up to 180 samples) | | |--------------------------------------|--|--| | | Cetac ASX 560 (capacity up to 240 samples) | | | | Cetac Oils 7400 (capacity up to 384 samples) | | | Dilution autosamplers | Cetac SimPrep offline dilution system | | | | Cetac SDX_{HPLD} online dilution system | | | Discrete sample introduction | Cetac ASX_{PRESS} P_{LUS} 6 port rapid sample introduction system for aqueous samples | | | | Cetac ASX_{PRESS} P_{LUS} 6 port rapid sample introduction system for oil samples | | | Temperature controlled spray chamber | ■ Isomist XR with temperature range from -25 $^{\circ}$ C to 80 $^{\circ}$ C | | | Hydride systems | Continuous flow hydride system HS PQ Pro with online reactant addition, micro spray
chamber as gas/liquid separator and hydride pro injector for superior detection limits of
hydride elements | | | | Continuous flow hydride system HS PQ with online reactant addition and dual inlet
spray chamber for the simultaneous analysis of hydride and non-hydride elements | | | Argon humidifier | Elegra Argon Humidifier | | #### **RF** Generator ### **High Frequency RF Generator** | Туре | Free-running RF-tube generator | | |---------------------|--|--| | Radio Frequency | ■ 40 MHz | | | Power range | 700 to 1700 W (in 50 W increments) | | | Coil | 4-winding copper | | | Power supply | Solid-state | | | Plasma warm-up time | • < 5 min | | #### **Plasma Observation** #### **Dual View Plus** | Plasma observation | Radial, axial | |-------------------------------|---| | Attenuated plasma observation | Radial plus, axial plus | | Control | Method parameter in software | | Working range | Sub μg/L to high percentage range | | Viewing position | Fully automated optimization of the plasma viewing position in all plasma observation
modes | ## **Optical Bench** ### **High-resolution optics** | | PlasmaQuant 9100 Elite | PlasmaQuant 9100 | | |-------------------------------------|--|---------------------------------------|--| | Туре | ■ Echelle Double Monochromator | | | | Pre-monochromator | Quartz prism | | | | Entrance slit | ■ 5 variable settings and fixed intermediate slit (dimensions entrance slit: 35 x 1800 µm) | | | | Optical bench | - <u> </u> | and argon purged | | | Grating | Echelle grating with large blaze angle of 76° | | | | Focal length | ■ 400 mm | | | | Spectral resolution | • 0.002 nm at 200 nm | • 0.006 nm at 200 nm | | | FWHM values | ■ ≤ 3.5 pm for As 193.696, Tl 190.796 | ■ ≤ 5.0 pm for As 193.696, TI 190.796 | | | Wavelength range | ■ 160 – 900 nm | ı | | | Number of accessible emission lines | - > 43,000 | | | | Wavelength accuracy | < 0.4 pm via internal Ne-correction | | | #### **Detector** | Туре | Charge Coupled Device (CCD) | | |----------------------|-----------------------------|--| | Cooling | Peltier cooled to -10 °C | | | Integration times | • 1 ms to 10 s | | | Linear dynamic range | 6 orders of magnitude | | | Integration modes | Peak, spectrum | | | Туре | Charge Coupled Device (CCD) | | | Cooling | Peltier cooled to -10 °C | | ## analytikjena An Endress+Hauser Company # Technical Data PlasmaQuant 9100 Series ### Limit of Detection* | Element/Line [nm] | LOD axial [μg/L] | | LOD axial [µg/kg] | | |-------------------|------------------|-----------|-------------------|--| | | 0.5 % HNO₃ | 15% NaCl* | 100% Kerosene* | | | P 177.436 | < 2.0 | < 5.0 | < 3.0 | | | As 193.698 | < 2.0 | < 5.0 | < 4.0 | | | Zn 213.856 | < 0.1 | < 0.4 | < 0.6 | | | Pb 220.353 | < 1.0 | < 3.0 | < 10 | | | Mn 257.610 | < 0.05 | < 0.3 | < 0.1 | | | V 292.401 | < 0.1 | < 0.3 | < 1.0 | | | Cu 324.754 | < 0.2 | < 0.7 | < 0.6 | | | Na 589.592 | < 0.5 | n.a. | < 4.0 | | | K 766.491 | < 1.0 | n.a. | < 2.0 | | ^{*} LOD specification for PlasmaQuant 9100 Elite only #### **Gas Control** | Automated gasbox for all gas flows | • Yes | |------------------------------------|--| | Plasma gas | 10 to 20 L/min with 0.1 L/min increments | | Auxiliary gas | 0.2 to 2.0 L/min with 0.05 L/min increments | | Nebulizer gas | 0.1 to 1.5 L/min with 0.01 L/min increments | | Oxygen gas | 0.0 to 0.05 L/min with 0.01 L/min increments | | Gas purity | • > 4.6 | | Argon inlet pressure | • 4 to 6 bar | ## Self-Check System | Sensors and interlocks | Gas pressures | |--|---| | | Gas flow rates | | | Extraction rate of exhaust system | | | Positioning of torch | | | Pressure of spectrometer gas | | | Nebulizer blockage | | | Generator power | | | Temperature of cooling agent | | | Flow rate of cooling agent | | | Plasma intensity and stability | Status of door for torch compartment ### **Physical Data** | Weight | Approx. 170 kg | | |----------------------------|---|--| | Dimensions (W x H x L) | 990 mm x 940 mm x 855 mm | | | Interface | PC connection: USB | | | Fuses | 32 A | | | Power supply | 230 V (± 10%) | | | Power consumption | 4600 VA | | | Operation conditions | + 15 to 35 °C, 20 to 90% relative humidity, non-condensing atmosphere, free from corrosive fumes | | | Exhaust requirements | 3.5 to 5.5 m³ / min | | | Technical Standards | Complies with standards for safety and electromagnetic compatibility for CE Marking (LVD 2014/35/EU; EMC 2014/30/EU; RoHS 2011/65/EU) and UL, CSA marking, ISO 9001 compliant | | | Gas consumption in standby | None | | | Warm-up from powered-down | < 15 min | | #### **Control and Data Evaluation** | Control unit requirements | PC with Windows 8.1 or higher (32- or 64 bit), \geq 2x USB 2.0 (or higher), graphics resolution of 1280x1024 (or higher), CD drive | |---------------------------|--| | Control unit requirement | ASpect PQ with: | | | Method development tool (line library, pre-defined methods, free selection of
instrument parameters, various calibration strategies) | | | Spectral evaluation tools (Inter element correction (IEC), patented automatic baseline
correction (ABC), static baseline fitting, correction of spectral interferences (CSI),
identification of emission lines, free selection of number and position of evaluation
pixels | | | Quality control module with pre-defined QC tests and QC charts | | | 21CFRPart11 compliance | | | QC charts with pre-defined QC tests | | | Advanced statistics module | | | Optional online status updates on mobile devices | ## **Chiller Requirements** | Cooling capacity: | • 3 kW | |--|--------------------------------------| | Water temperature (at cooling water inlet ICP-OES) | ■ 17°C -24°C | | Set temperature cooler | ■ 18°C | | Temperature stability | • plus/minus 0.1 °C | | Water flow in cooling water circuit | min.1.5 2,0 l/min , ideal 3,0 l/min | | Cooling water pressure | max. 6 bar | | Water purity Conductivity | • 50 200 uS/cm | | Hose diameter cooler outlet | ■ 13 mm = ½ inch. | | Water flow in cooling water circuit | min. 1.5 2,0 l/min , ideal 3,0 l/min | | Cooling water pressure: | max. 6 bar | | Water purity Conductivity | • 50 -200 uS/cm | This document is true and correct at the time of publication; the information within is subject to change. Other documents may supersede this document, including technical modifications and corrections. © Analytik Jena GmbH +Co. KG